
ACOUSTIC PROPAGATION IN A 

THERMALLY STRATIFIED ATMOSPHERE 

(2lASA-CR-lGl?oZ) ACOGSSIC ESCPPGASXON II A 189- 16446 
2hERBALLY S l R A T l F f  Et dIEOSIEE'LI  P i n a l  Report 
(Utah U n i v . )  115 p CSCL 20A 

Uaclas 
G3/71 0189769 

W. K. Van Moorhem 

University of Utah 
Salt Lake City, Utah 

Grant NAG 1-283 
September 1988 

National Aeronautics and 
Space Administration 

langley Rsu#rch Center 
Hampton Virginia 23665 



. 

Acoustic propagation in an atmosphere with a specific form of a temperature 

profile has been investigated by analytical means. The temperature profile used is 

representative of an actual atmospheric profile and contains three free parameters. 

Both lapse and inversion cases have been considered. Although ray solution have 

been considered the primary emphasis has been on solutions of the acoustic wave 

equation with point source where the sound speed vanes with height above the ground 

corresponding to the assumed temperature profile. The method used to obtain the 

solution of the wave equation is based on Hankel transformation of the wave equation, 

approximate solution of the transformed equation for wavelength small compared to the 

scale of the temperature (or sound speed) profile, and approximate or numerical 

inversion of the Hankel transformed solution. The solution display the characteristics 

found in expenmental data but extensive comparison between the models and 

experimental data has not been carried out. 
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Although the propagation of acoustic signals through the atmosphere has been 

studied for many years, and most atmospheric effects are understood in the qualitative 

sense, quantitative modeling of most of these effects has become an area of interest 

only recently. The dominant effect occurring in atmospheric propagation is the 

spreading of acoustic energy associated with a wave propagating in three dimensions 

over an ever increasing area, the well known spherical spreading effect, which occurs 

in an isothermal, unbounded atmosphere. In addition to this, acoustic waves are 

absorbed by the atmosphere, reflected and absorbed at the ground surface, scattered 

by turbulence, and refracted by both wind and temperature gradients. 

This report summarizes a project to develop models for the propagation of 

acoustic signals from a point source above a finite impedance ground surface in the 

presence of temperature gradients in the atmosphere. The situation of interest is the 

case of sound from a source located within a few meters of the ground propagating to a 
receiver located within a few meters of the ground through the temperature gradient 

that commonly occurs just above the ground surface. Best[l], Gieger[2], and 

Reynolds[3] all discuss the temperature gradient in this region. Within one to two 

meters of the ground the temperature generally goes through a diurnal cycle with a 
lapse condition, temperature decreasing with height, occurring in the afternoon and an 

inversion condition, temperature increasing with height, at night, see Figure 1.1. 

Shortly after sunrise and sunset the atmosphere goes through a nearly isothermal 

period when the transition from lapse to inversion or inversion to lapse condition is 

under way. This simple picture of the very complex atmospheric dynamics near the 

ground can be upset by significant winds which increase the mixing near the ground 

surface and tend to lead to a more isothermal situation, or to an overcast which can 

' .  
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Y 
prevent a strong lapse condition from developing by blocking the insolation or prevent 

an inversion from occurring by blocking the radiation from the ground to the night sky. 

by 

References 1,2 and 3 all discuss the classic logarithmic temperature profile given 

z T = To In ( - )  

(1 -1 1 
which is based on empirical results. This result, although fitting the experimental data 

well, certainly is not reasonable either for heights very near the ground or very far 

above the ground. In addition, logarithmic functions are generally more difficult to deal 

with in an analysis then are algebraic functions. For this latter reason the profile used 

in this study is 

AT T = T  + - l+az 

(1 -2) 
This form of the temperature profile is shown in Figure 1.2 along with some 

temperature data obtained by Buttenvorth[4]. The agreement between the data and 

the assumed function fitted to this data is excellent. Also as compared to (1.1) the 

physical meaning of the parameters in (1 .2), T,, AT, and a, are clear. The assumed 

temperature profile asymptotically approaches the temperature T, high above the 

ground. At the ground the temperature is T, + AT, thus the change in temperature 

between the ground and far about the ground is AT. The derivative of temperature 
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with respect to height evaluated at the ground surface is - a AT. Thus l/a is the scale 

over which the temperature change AT occurs. For example at a height z = l/a 

one-half of the total temperature change AT has occurred. The temperature profile of 

(1.2) can be used to represent either a lapse or inversion condition. For a lapse 

condition the parameter AT is positive and for an inversion it is negative. 

The equation governing the wave motion is the simple acoustic wave equation 

with a sound speed varying with height and with a point source term, 

At the ground surface, z = 0, a normal impedance boundary condition 

(1 -4) 

is assumed. High above the ground, z -+ -, only outgoing waves are permitted, a 
radiation condition. At the source height, z = s, the pressure field is to be continuous, 

and to satisfy the conditions implied by (1.3). 

lapse and inversion cases for the assumed temperature gradient, (1.2). This both 

yields a quantitative understanding of the propagation phenomena, and plays an 

integral part in understanding the modeling that follows. The model for the lapse 

condition is developed in Section 3 and the inversion model is described in Section 4. 

Section 2 contains a discussion of the acoustic rays that characterize both the 
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Section 5 contains a discussion of the conclusions developed during the project. 
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2.0 ACOUST IC RAYS 

Acoustic ray tracing is a relatively simple procedure for an axisymmetric case 

which yields a great deal of qualitative information about a given propagation situation. 

Only a brief discussion is given here. More detail is given in [5]. For an horizontally 

stratified atmosphere the acoustic rays may be determined from an acoustic form of 

Snell's law 

(2.1 ) 

where the source is located at the height s. Here 9(z) is the angle between a ray and 

the horizontal at the height z, see Figure 2.1. Thus the right hand side of (2.1) is a 

constant for a ray emitted from the source at an initial angle 9(s). Using (1.2) to obtain 

1 
2 2 AT 1 a ( z ) = a  ( 1 + -  

OD Tm ( 1  +az) 

(2.2) 
which describes the sound speed as a function of height, the slope of a ray initially 

emitted from the source at an angle e(s) is determined from (2.1) to be given by 

-- 
dr C z + D  
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where 

AT 2 

T 
A = a (  1 +as+--( 1 +-)Cos e(s)] 

00 

and 

AT 2 

T D = ( I  + - ) ( I  + ~ S ) C O S  e(s) 
00 

(2.7) 

Equation (2.3) can be integrated to obtain the ray paths. Different results are obtained 

in the lapse and inversion cases and these will be considered separately in the next 

two sections. 

2.1 Lapse Case 

In the lapse case the quantity A is positive and integrating (2.3) to obtain the rays 

' 
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yields four different cases. For rays going upward from the source (using the positive 

sign in (2.3)) 

for rays going downward initially from the source (using the negative sign) 

r = F(S, e(s)) - F(Z, e(s)) 

(2.7) 
for rays that were initially going downward but have been reflected upward at the 

ground (using the positive sign and (2.7)) 

r = F(Z, e(s)) + F(S, e(s)) - 2 F(O, qs)) 
(2.8) 

and for rays that initially were going downward and were refracted upward before 

reaching the ground (again using the positive sign and (2.7)) 

The function F(z, e(s)) is given by 

(2.10) 
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where 

E = A D - B C  
AT AT 2 
T = a ( l  + a s + - ) ( T ) (  1 +as)Cos e(s) 

a a 

(2.1 1) 

and 

(2.1 2) 

The absolute value of A in (2.1 2) is immaterial in the lapse case where A is always 

positive but significant in the case of an inversion where A may change sign. 

The rays are identified by the parameter e@), the initial angle at which the ray 

leaves the source. Thus a ray initially propagating downward and identified by a 

particular value of e(s) will either be reflected upward at the ground or refracted upward 

at a turning point. In either case the reflected or reflected ray will be identified by the 

same value of e(s) as the initial ray. Figure 2.2 is an example of the rays calculated 

from (2.6) to (2.9). 

Setting e(z) = 0 in (2.3) yields an expression for the height at which an initially 

downward propagating ray becomes horizontal, the turning point, as 

a 



(2.1 3) 

4 

Solving this expression for Cos e(s) yields 

AT ' ( 1  +az$)( 1 +as+-) i T 
00 

AT (l+as)(l+az, +-) P T  
m 

COS e(s) = 

(2.1 4) 

which identifies the ray having a turning point at a height qp. The ray that grazes the 

ground and is the boundary between reflected and refracted rays can be found by 

setting zlP = 0 in (2.14). The ray that divides the initially upward and downward 

propagating rays is identified by e(s) = 0. 

For the ray that grazes the ground, and is identified by the value of e(s) defined by 

(2.14) with zlP = 0, the function F(0, e(s)) = 0 and thus this ray is defined by either (2.8) 

or (2.9). Similarly for 0(s) = 0 the ray can either be obtained from (2.6) or (2.9) since on 

this ray F(s, 0) = 0. At a turning point F(zw, e(s)) = 0 when e(s) is given by (2.14). 

(2.9) and at a fixed height z is the maximum possible value of r for rays with turning 

points below that height. Thus the ray tangent to the shadow boundary or caustic at the 

height z is identified by solving the equation 

The shadow boundary is more difficult to locate. It is bounded by refracted rays 

* 
d 

, 
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(2.15) 

for e(s) and then using that value in (2.9) to determine the location. The derivative in 

(2.15) can be obtained from 

(2.16) 

where 

COS e(s) 
1 +az+- 

(2.17) 

Due to the complexity of this expression an analytic solution is not possible and either 

a numerical solution of (2.1 5) must be obtained or the approximate relations given in 

[!5j must be used. 

10 
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2.2 Inversion Case 

As in the lapse case several different types of rays occur in the inversion case. 

Integrating (2.3) with AT/T- negative also yields three different forms for the function 

which determines the rays depending upon whether the quantity A given in (2.4) is 

positive, negative or zero. The meaning of these three cases is discussed below. For 

rays that are initially angled upward (using the positive sign in (2.3)) 

(2.1 8)  

where i = 1,2, or 3 depending on the initial angle of the ray leaving the source. Rays 

with i =1 leave the source a sufficiently large angle upward so they do not have a 

turning point and are never refracted downward. The case i =2 corresponds to the 

limiting ray that has a turning point at infinite height. Rays described with i = 3 have 

turning points at finite height and are alternately refracted downward and reflected 

upward at the ground. These are the rays trapped by the inversion. 

(2.3)) 

Rays that initially are angled downward are given by (using the negative sign in 

(2.19) 

for all three cases before they are reflected upward at the ground. The reflected 

waves are given by (using the positive sign) 

11 



(2.20) 

in all three cases. Note that after reflection the i = 3 rays are refracted downward and 

reflected upward from the ground repeatedly. In the case of these i = 3 type rays four 

more forms exist. For rays that initially were angled upward (using the negative sign) 

r = -F,(z, e(S)) - F,(s, e(S)) - 2 n F,(O, e(S)). 

(2.21) 

after they have been refracted downward and have been reflected n times from the 

ground. For rays that initially were angled upward and have been reflected upward n 

times from the ground and have not been refracted downward following that reflection 

= F3(zi e(s)) - F3(si e(s)) -2 n F3(o, e(s)) 

(2.22) 

Thus an i = 3 type ray leaving the source upward is first described by (2.1 8) or (2.22) 

with n = 0 before it is refracted downward through a turning point. After it is refracted 

downward the first time it is described by (2.21) with n = 0. Following its first reflection 

from the ground it is given by (2.22) with n = 1 , then by (2.21) with n =1 between 

refraction through a turning point and reflection, then (2.22) with n =2, etc. 

For rays that initially were angled downward (using the positive sign) 

r = F~(z, e(s)) + F~(s ,  e(s)) -2 n ~ ~ ( 0 ,  

(2.23) 

after they have been reflected upward n times from the ground. For rays that were 

. 
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initially angled downward (using the negative sign) 

r = - F ~ ( z ,  e(q) + F3(s, e(q) -2 n ~ ~ ( 0 ,  e(s)) 

(2.24) 

after they have been reflected n times from the ground and have been refracted 

downward through a turning point. 

Thus an i = 3 ray that is initially angled downward at the source will first be 

described by (2.19) or (2.24) with n = 0 until it reflects from the ground, then by (2.20) or 

(2.23) with n = 1 between reflection and refraction through a turning point. Following 

the turning point and before the second reflection (2.24) with n = 1. Then by (2.23) with 

n = 2, etc. 

The functions Fi are given by 

+ E I" (W) ,/ ( A  z + B)(  C z + D )  
A 2 A J X  4 - 1  

F,(z, = 

(2.25) 

fori = 1, 

(2.26) 

for i = 2, and 

. 
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E + ( A z  + B)(  C z + D )  
A A J X  

q z ,  e(s)) = J 

(2.27) 

for i = 3. As discussed above, the i = 1 case occurs for A greater then zero or for 

Cos e(s) < Cos 63 (0 > 0) where 

cos e = 
1 +as 

(2.28) 

Rays with values of the initial angle, e(s), greater the value of the angle given by (2.28) 

then escape from the trapping effect of the inversion. The ray with A equal to zero or 

6(s) = 8 is the limiting ray that has its turning point at infinity (the i = 2 case), while the 

rays with i =3 correspond to negative values of A or Cos e(s) > Cos63 (e@) < e), and 

are the rays trapped by the ground. Rays with initial downward slopes can be divided 

in a similar manner but in all cases at least one reflection occurs before the ray 

escapes the trapping effect of the inversion, is the limiting case, or becomes trapped by 

the inversion. 

Figure 2.3 is an example of the rays calculated from the above equations for the 

case of an inversion. 

14 



3.0 LAPSE C AS€ SOLU TION 

The solution of the problem posed by equations (1.2) to (1.4) in case of AT > 0, a 

lapse condition, was undertaken first. The general approach used in both the lapse 

and inversion cases was to first separated out a sinusoidal time dependence from the 

pressure, and then to Hankel transform the governing equations with respect to the 

horizontal distance from the source, r, to reduce the number of independent variables 

to one, the vertical height, z. This reduces the governing equation for the transformed 

independent variable to an ordinary differential equation for which an approximate 

solution can be obtained. This solution contains the Hankel transform variable, p, 
which replaced the horizontal distance in the transformed governing equation. The 

transformed solution must then be inverse transformed to return to physical space. 

Because of the complexity of the solution this inverse transform can not be carried out 

exactly and either an approximate inversion must be used or the inversion must be 

carried out numerically. Both approaches were used in the lapse case. In both of 

these approaches it is necessary to to interpret the Hankel transform variable as a 

complex variable and to continue the solutions off the real axis for the transform 

variable. This is not an intuitive process as the physical interpretation of the transform 

variable is lost off the real axis. This process will be discussed in detail below. 

With the solution obtained for complex values of the transform variable attention 

will be turned to the inversion of the transformed solution. The methods used are the 

classical saddle point approach and a Fast Fourier Transform (FFT) based numerical 

method. These methods are describe in detail elsewhere and will be only described 

briefly here. Finally the results of these approaches will be described. 

1 5  



3.1 Transformation and approximate solution 

The time dependence in the governing equation and boundary conditions, 

equation (1.3) and (1.4) can be removed by assuming 

3. I 
The Hankel transform or twodimension Fourier transform for an axisymmetric function 

can be defined [SI as 

and the inverse transform as 
a - 

G(zv r) = J ~ ( 2 ,  P) P J,(PO dp 
0 

(3.3) 
The use of transform methods in solving partial differential equations arises from the 

fact that an appropriate transform will convert a particular type of derivatives into an 

algebraic term expressed in terms of the transform variable (p in (3.2) and (3.3)) in 

place of the original physical independent variable (r in (3.2) and (3.3)). Thus the 

number of independent variables in the partial differential equation will be reduced by 

one and the transform variable acts only as a parameter in the transformed solution. In 

16 



the case of Hankel transforms the radial3ependence in the Laplacian operator 

expressed in cylindrical coordinates for a axisymmetric function is converted to an 

algebraic term, see [SI for more details. Applying (3.2) to (1.3) leads to 

1 +az q 
AT 2lc 
T 

- p2 ] G = - - 6(z-s) 
a- 1 +at+- 

OD 

(3.4) 
The term on the right hand side represents the source. The homogeneous form of this 

equation would have a solution with an oscillating behavior if the term in square 

brackets was positive and an exponential behavior if it was negative. Thus the 

transition occurs when the term is zero or 

1 +az+- 

Notice that if 

(3.6) 
then equations (3.5) and (2.14) are very similar and we can interpret (3.5) as giving the 

value of p that causes the turning point (the location of the transition from oscillatory to 

17 



exponential behavior as well as a horizontal ray) to be located at the height z. But (3.6) 

remains to be be interpreted. From (2.1) and (2.2), however, one finds that p is equal to 

(daJ times the cosine of the angle that a ray, which was initially at an angle e(s), 

makes in the limit as height tends to infinity. Thus just as we have used e(s) to identify 

a ray we can also use the Hankel transform variable p. This discussion emphasizes 

the close relationship between the model being developed and the ray description. 

These parallels will be also be pointed out below. 

If height is nondimensionalized in (3.4) using the scale of the temperature 

gradient, a, a uniformly valid approximate solution to the resulting equation can be 

obtained, using the method presented by Nayfah [fl, for large values of d(&a) as 

I 

where 

3 
2 

T 
1 +a+-- .. 

OD 

- 
g (2, p) = (1 +at +- 

18 



4 
-(%) 1 + a z 

l+az+- AT 0 

T 
m 

2 

1 - ( % p )  J 0 

a= 

(3.10) 

and 

(3.1 1) 

The modified Hankel functions h, and h, are defined in [8] by 

19  



1 

(3.1 2) 
and 

1 - 
3 1  z 

h,(S)= (3) S2 H, (2) ( 5 5 2 )  2 
- 
3 

(3.13) 
A and 6 are constants that have to be determined. This solution is rather complex and 

is expressed in terms of unfamiliar functions. Several important features of this solution 

need to be discussed to understand it. 

The functions h,(S) and h2(5) have a complicated behavior [8]. For real values of 

the argument both h, and h2 yield a complex results which is oscillatory with an 

algebraic decay of the amplitude for increasing magnitude of the argument. The 

function hl can be shown to represent downward propagating waves (for eid as used 

here) and h2 upward propagating waves. The oscillatory behavior also occurs for hl 

when the phase of the argument is equal to 2d3 and for h2 when the phase of the 

argument is -2d3. When the phase of the argument is d 3 ,  hl decays exponentially 

and h2 grows exponentially. When the phase is -d3, h2 decays exponentially and hl 

grows exponentially. 

The solution of the point source problem is closely related to the plane wave 

20 



problem discussed in [9]. In wave problems where transforms have been used the 

inverse transform can generally be interpreted as a superposition of plane waves over 

a range of angles. In the case of the Hankel transforms used here the limits of 

integration on J3 are from zero to infinity and p can be interpreted as &a, Cos 8, where 

is the angle between a ray and the horizontal in the limit of height tending to infinity 

as given in (3.6). Thus a value of p of zero corresponds to a ray which is propagating 

vertically upward at infinite height, a value of p of o/a,corresponds to a horizontal ray 

at infinite height, and a value of p of o/a, {[ 1 + az ] / [ 1 + az + ATn, ]}le corresponds to 

a ray with imaginary slope at infinity such that its turning point (point of horizontal slope) 

is located at the height z. Based on this description the waves group themselves into 

several different forms. 

The first group, 0 S p S Po = W a ,  { 1 / [ 1 + AT/T,)}l'? are waves with their turning 

points at or below the ground surface and thus are actually reflected at the surface. 

These waves plus their reflections constitute the first group. The wave with p = Po 
grazes the surface and is the limiting ray between the reflected and refracted rays. The 

second group, Po s p I p, = ala, {[ 1 + 012 ] / [ 1 + az + AT/T, ]}la, are waves with a 

turning point above the ground and below the observer height z. The waves in this 

group consist of those leaving the source in the range of angles described by (3.6) and 

their continuation after they have been refracted upward. The third group has pz I p I 

f3, = o/a, {[ 1 + us ] / [ 1 + as + ATn, I}"? These waves have their turning point above 

the observer and below the source. At the observers location these waves should yield 

21 



a exponentially decaying solution. The waves in this group consist of those leaving the 

source in the appropriate range of angles and their continuation following refraction 

upward. These three groups of rays can all be seen in a ray diagram for a point source 

and all initially are propagating downward from the source. In addition there are waves 

propagating upward initially. These are in the range 0 5 p S p, but differ from the first 

groups in that they do not originate as downward propagating waves that are reflected 

or refracted upward. Thus the "reflection" coefficient is missing from these waves. 

source, there are several types that are necessary for the superposition given by (3.3) 

In addition to the above groups that can be seen in a wave diagram for a point 

where p ranges from zero to infinity, but do not occur in a ray diagram for a point 

source. Group five consists has PS < P < a/&, these waves have the turning point 

above the source. In addition there are waves with a/& < p, these have no physical 

interpretation and correspond to complex angles at infinity. 

With these concepts let us proceed to the mathematical solution to the problem. 

The function g3" given in (3.8) contains four branch points, two at p = f pz and two at p 

= f 611%. The negative branch points are not significant and will not be discussed. On 
, I  

the real p axis, for 0 5 /3 e pz, g3/2(z, p) is real. For pz e p < o/a, g3Q(z,p) is positive and 

imaginary, and for p > o/a, g3e(z,p) has a phase of -x at p = o/a,and tends to a 

phase of -7d2 as p tends toward infinity. This is shown in Figure 3.1. The branch line 

for g(z,p) = ( g3n(z,p))mcan be chosen to be on the line where the phase of g3Q(z,p) is 

-K. This line extends from the first branch point at Pr to the second at o/a,and 

22 



encloses a small region above the positive real axis, see Figure 3.2. The branches 

chosen for g(z,p) yield a phase of zero for 0 5 p < pz, d 3  for pz < p < o/;g, and varying 

from -2d3 to - ~ / 3  for p > a/&. 

Now by considering three cases the various forms of the solution can be 

obtained. These are shown in Figure 3.3. The first case is a wave with the turning 

point below the surface, 0 5 p s Po. The second has the turning point below the source 

but above the surface, Po 5 p I p,. In this case if the receiver is below the turning point 

then p > pz, i f  it is above the turning point then p < pz. The third case has ps 5 p I o/a, 

and the turning point is above the source. Again if the turning point is above the 

receiver then p > pz, if the receiver is above the turning point then p < pz. Note that 

these waves do not appear in a point source ray diagram but are needed to complete 

the solution. 

The solutions corresponding to the cases given above require the determination 

of the constants in (3.7). To do this a set of conditions are required. As result of the 

source terms in (3.4) the solutions separate into at least two forms, one for the region 

below the source and one above. The radiation condition, requiring outgoing waves in 

the limit as height tends to infinity, requires A to be zero above the turning point for 

z > s. At the source height, z = s, the solution must be continuous 

lim G(z,P) = lim G(z,p) 
Z+S+ Z+S. 

(3.1 4) 

and must satisfy 

23 



(3.1 5) 

which is obtained by integrating (3.4) from t = s - e to z = s + e and taking the limit e+O. 

At a turning point continuity is required, 

lim G(z,P) = lim G(z,P) 
z-+ztp -ztp 

(3.16) 
At the ground surface, z = 0, the required condition is the normal impedance condition 

(1.4) which can now be expressed as 

i Z  aG G = - -  
UP, at  

(3.1 7) 
Using these conditions, equation (3.4), and the physical situations presented in 

Figure 3.2 the following solutions can be obtained. F o r t  > s 

(3.18) 

24  



(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 
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(3.24) 

(3.25) 

(3.25) 

(3.26) 

(3.27) 
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(3.28) 
and 

1[ -i- 
6 

e R, = 
I[ 

i- 
6 

e - i R ,  

(3.29) 

The solutions obtained above are for real values of p, but as discussed above p 
must be interpreted as a complex variable. The boundaries between solutions off the 

real axis must be chosen as the branch lines used for calculating the function g(z,p), 

g(s$) and g(0,p) from g3R(zlp), etc. as were discussed above. On crossing these 

branch lines it should be noted that the phase of g(z,p), g(s,p) and g(0,p) 

discontinuously jumps from -2d3 to 2d3  and the phase of g,(z$), gt(s,Q) and g,(O,p) 

increases by -2d3 (since it contains the root of g in the denominator). 

useful for this type of behavior: 

Reference [8] presents some results for the modified Hankel functions that are 

... 
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(3.30) 
and 

2 i- 

h, (  rl e 1 = - h,(rl) 

(3.31) 
Using these relations the solution as given by equation (3.18) to (3.25) can be rewritten 

and the regions of validity determined. For z > s these are 

(3.34) 

in region C 



I .  

(3.35) 

(3.36) 
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in region H. To obtain these results it is necessary to recognize that 

(3.40) 

From these results and the description of the behavior of the function g(z@ (and 

therefore q) at the branch lines it should be clear that the solution is continuous at the 

branch lines even with g(z$) being discontinuous. This transformed solution must 

now be inverted. 
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3.2 Lapse Results 

Two methods were used to approximately invert the Hankel transform contour 

integration which lead to the saddle point method in the insonified region of physical 

space and a FFT based numerical method. Neither of these methods will be described 

in detail as the basic method is well known in both cases and the specific application 

has been described in detail elsewhere. 

Both of these approaches are based on the concept that although the inversion 

integral (3.3) is defined as being carried out along the real axis, the residue theorem of 

complex variables [lo] allows the path of integration to be changed provided that there 

are no poles of the integrand between the original and modified paths. If poles exist 

then additional terms must be included with the integral along the modified path. In the 

case of an isothermal atmosphere the additional term due to the pole leads to the 

surface wave term. In the lapse case the only possible pole is the due to the 

denominator of the term multiplying the upward going wave (the reflection coefficient in 

the case where a reflection occurs) being equal to zero. These case has not been 

completely examined but in the limit of AT equal to zero it reproduces the surface wave 

term. Thus one clearly expects to see a similar behavior in the case of weak lapse 
condition. This surface wave like-behavior has not been investigated beyond the point 

described above and has not been included in the results given below. 

3.2.1 Contour Integration-Saddle Point Method 

Integrals of the form 
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l(5) = I ei ' '(') dp 
C 

(3.41) 

can be approximately evaluated by the saddle point method if the path of integration C 

is such that the ends of the path do not significantly contribute to the integral, 5 is a 

large parameter, and f(j3) has a point where the first derivative is zero. Complex 

variable theory indicates that a function can not have maximum in the region where it is 

analytic and a point where its first derivative is zero must be a saddle point [lo]. At a 

saddle point if the path of integration follows the line of constant real part of f(p) then 

the imaginary part f(j3) either increases or decreases at a maximum rate. I f  the path of 

integration follows the line of constant imaginary part of f (p) that passes through the 

saddle point then the real pari of f(j3) increases or decreases at a maximum rate. If we 

choose to follow a line of constant real part of f(p) through the saddle point in the 

direction such that the imaginary part increases at the maximum rate then the 

magnitude of the integrand decrease rapidly as we move away from the saddle point. If  

€, is large then the only significant part of the integral is near the saddle point and the 

integral can be approximated by using the first two non-zero terms in the Taylor series 

for f @ )  yielding the well known results given in (1 11. 

This method works well when a saddle point exists. However when one does not 

exist then an approximate integration can be carried out as described in detail by Ma 

11 21. 
To apply this method to the integrals given by (3.3) with (3.32) to (3.39) both the 
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Hankel functions and the modified Hankel functions must be replaced by their 

asymptotic expansions and the integral regrouped to extend from negative infinity to 

positive infinity. When this is done the result contains twenty terms since the integrand 

is different between in the various regions in 9-space and in each part of the G function 

contains two terms. Thus writing out only the terms of interest for z > s yields 

BO 

+ ... 
(3.42) 
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I I 

and for z< s 

+ ... 

+ ... 
(3.43) 

To find the saddle points the arguement of of exponential term must be differentiated 

with respect to p and set equal to zero. On differentiating one finds 
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1 + a s  

T 
P I )  

3 - 
-1 4, ( X g2(t,p)) = - F(z,  COS { 2 

ap 
(3.44) 

where F(zlO(s)) is the function defined in (2.10) and used to describe the rays. 

Differentiating the arguments of the exponentials then yields equations (2.6) to (2.9), 

the equations defining the rays. Thus the saddle points associated with a particular 

point in physical space (in the insonified region) correspond to the values of p (or 0(s) 

where the two are related by (3.6)) that defines the two rays passing through the point 

in physical space. Just as the rays were interpreted as upward-going-direct waves, 

refracted waves, etc. the terms in (3.42) and (3.43) also have the same interpretations. 

Determination of the saddle point values then first requires determination of the types of 

waves present at a particular physical location and then solution of the appropriate two 

of equations (2.6) to (2.9). Once the location of the saddle point has been determined 

the classical results may be applied. A computer program for carrying out this 

procedure and the resulting equations to approximate the inversion integral have been 

given in detail by Cheng [13] and will not be repeated here. A typical result is shown in 
Figure 3.5. 

As the physical location of the receiver moves into the acoustic shadow real 

values of p or e(s) cease to exist. Ma 1121 has suggested an approximate approach 

which is also based on contour integration. In this approach the inversion integral 

between p, or p, and o/a, is carried out numerically and the remainder of the integral 

extending from negative infinity and to positive infinity are carried out in a manner 

similar to the saddle point method. The integral carried out numerically physically 
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represents the contributions of the exponentially decaying disturbances due to waves 
with turning points above the receiver. Ma (121 also incorporated into his program 

Cheng's saddle point method for the insonified region with some changes. A typical 

result is shown in Figure 3.6. 
Both of these methods suffer from discontinuities as the receiver passes from a 

region where the receiver senses a direct and a reflected wave to one where a direct 

and a refracted wave would occur. This results not from the transformed solution which 

is continuous, but from the large argument approximation that must be made to obtain 

the saddle point form (3.41) and from the fact that the argument becomes zero at most 

of the boundaries. As a result of these intrinsic problems with the saddle point method 

a numerical approach was then applied. 

The saddle point method has the appeal of a physical interpretation of the 

mathematical steps and results. A purely numerical method loses that interpretation 

and the physical insight that comes from it. 

3.2.2 Numerical Integration Method 

The numerical approach used was developed by Richards and Attenborough ( 141 

and was applied to the present case by Lloyd (151. The method approximates the 

inversion integral by using a Fast Fourier Transform (FFT) algorithm. To obtain an 

integral suitable for the use of the FFT algorithm the Bessel function containing the 

horizontal distance dependence must be approximated by its asymptotic expansion. 

Three other modifications are then carried out. First, the integration path is modified to 

be above the real axis (Richards and Attenborough's original approach was to 

integrate below the axis but they also assumed e-a . ) ,  this avoids the discontinuities at 
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the branch points but requires integration up the imaginary axis. Second, the integrand 

is modified to make the integral along the imaginary axis zero, but, as claimed by 

Richards and Attenborough, to not change the result. finally an approximate term is 

added to account for the finite upper limit and to approximate the integral to infinity. 

This approach is described in detail by Lloyd [15] and Figure 3.7 is a typical 

result. Disadvantages of this approach are the large amount of computer time required 

and that a entire horizontal profile must be obtained at each receiver height. Thus to 

obtain a vertical profile many time consuming computer runs must be made and one 

point out of several thousand points is actually used from each run. This approach 

clearly does not contain the discontinuities present in the saddle point method. Figure 

3.8 compares the saddle point method and the purely numerical method. The 

agreement is excellent in the insonified region with the exception of the region very 

near the shadow boundary. The agreement is good in the initial sound level decrease 

as the shadow boundary is crossed but the saturation region deep in the shadow is not 

the same for the two methods. 

The numerical method often results in oscillations in the sound level at large 

distances from the source, this appears to be an artifact of the numerical inversion 

method and is dependent on the parameters of the inversion scheme. Also as very 
large distances are approached the Calcufat8d sound level often increases this is 

clearly due to the numerical inversion method. These points are further discussed by 

Lloyd (1 51 and a listing of Lloyd's program is given in Appendix A. 
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4.0 JNVERSION SOLUT ION . 
The inversion solution, AT < 0, follows very closely along the lines of the lapse 

solution. The governing equation and boundary conditions, (1.2) to (1.4), are identical 

in the two cases and the approach using Hankel transforms is also the same. Again the 

solution requires analytic continuation off the real J3 axis. This has proved to be difficult 

and lead to several errors initially. (The solution given in the Sixth Semiannual Report 

(1 81 are incorrect.) 

Although the solution can be discussed in terms of rays and the closely related 

saddle point method, this approach has not been used to approximately evaluate the 
solution in t h e  inversion case. In the lapse case only two rays, at most, pass through a 

given point. In the inversion case, at large distances from the source, many rays may 
pass through a given point due to the "trapping" effect of the inversion. Since the 

saddle point method requires all of these rays and their corresponding saddle points to 

be located, and this is the most difficult part of !he method, the approach becomes 

impractical. Thus only the purely numerical method of inversion has been used. 
I 

4.1 Transformation and approximate solution 

I The time dependence is removed from (1.3) as in (3.1) and the resulting equation 
I 

Hankel transformed using (3.2) to obtain (3.4). Again the location (in terms of the 

I transform variable p) of the transition from oscillating to exponential behavior is given 

~ by (3.5). However, since AT/T, < 0 the transition is at a value of p greater then ala... 

Using (3.6) and comparing results to those of Section 2.2 one can interpret the solution I 
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in the range 0 I p < daa as representing the rays that will escape the trapping effect of 

the inversion. These rays either go directly from the source to infinite heights or go 

from the source to the ground where a reflection occurs and then go to infinite heights. 

In the range &a, I p s p, the solution represents rays that are trapped by the 

inversion. The transition given by (3.5) applies to rays in this range. Beyond this range 

the rays do not occur in a ray diagram. 

The solution of (3.4) can again be approximated by (3.7) and (3.9) through (3.1 1). 

Equation (3.8) must modified by a negative sign on the right hand side yielding 

3 
2 

T 4 4  
1 + a r + -  

AT - \  * - 
g (z$) = - ( 1 + at +-) 

V a 

1 AT 
2 T  

+-- 
om 

1 E) 
1 -<o 

This change is necessary since the region of oscillatory solution is below the turning 

point in the inversion case while it was above it in the lapse case (see Nayfeh [q). In 

the inversion case AT/Tom < 0 and thus @ > 1 for 0 I p < &a, It is convenient to note 

that we may rewrite the logarithm term in this case as 
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1 1 + @  -1 1 - In ( - ) = Tanh ( - ) + i 
2 1 - 0  a 2  

to clearly indicate the choice of the branch of logarithm, In(-1) = +i x, the opposite of that 

in the lapse case. Thus, in the range 0 I p < &a, 93"(z,P) ranges from slightly below 

the negative real axis to infinity along the negative imaginary axis. For values of p 

between &a, and p, ranges along the positive real axis from infinity to zero. For real p 

greater than P, values of g3e(z,p) are along the positive imaginary axis, see Figure 4.1. 

As in the lapse case the boundary between these regions are branch points of the 

function g3e(z,p) with the branch lines extending downward from the branch points for 

Re@) > 0 in P-space. 

The argument of the Hankel functions involves g(z,P) = (gm(z,p))m and again the 

branches must be chosen with care. For 0 I p < dk g(z,P) is chosen such that its 

phase ranges from slightly greater then zero (or 2 x )  at P = 0 to x/3 as the branch point 

at p = da, is approached from values of p less then d ~ .  In this region the two 

modified Hankel functions have an oscillatory and exponential growth or decay 

behavior with with one (h,) representing upward traveling and decaying waves and 

the other (h2) downward traveling, growing waves. In the range o/a, < p < pz and 

g3Q(zlp) is real and positive. The function g(z,P) is chosen to be on the line with phase 
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-2d3. In this case the modified Hankel function hl represents both upward and 

downward traveling waves, a standing wave-like phenomena, and h2 a downward 

traveling wave. 

The branch line for g(z,p) = (g3R(~,p))m needs to be defined to extend these 

solutions off of the real axis. Lines of constant phase of g=(z,p) run frdm the first 

branch point to the second in a manner similar to the lapse case, but with the order of 

the branch points reversed. Figure 4.2 shows the behavior of these lines of constant 

phase. Again a line of constant phase is a convenient branch line. 

If the line where the phase of g3a(zlp) equals 4 2  is chosen as the branch line for 

g(z,p) = (g3R(z1p))2’3 then the phase of g(z,p) can be made to agree with the desired 

values on the real axis as described above. In addition for real p and p, p, g(z,p) 

has a constant phase of d 3  with h,(q(z$)) having a decaying exponential behavior for 

increasing t and representing the contribution of waves with a turning point below the 

receiver‘s height to the total pressure field. 

Using the conditions given in (3.1 4) to (3.1 7) and the physical descriptions of the 

type of waves that occur in each situation the following solutions can be obtained. For 
Z > S  

G = K I h,(.rl(s,P)) + R, h*(T(SIP)) 1 h & W w  

which is identical to (3.1 8) for Po > p, > j3, > o/a, > p > 0, 
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(4.6) 
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(4.10) 

for Po > p > p2 > p, > dam >o. Here K and R,, and R, are defined by (3.25) and (3.26) 

and 

(4.11) 

As discussed above these solutions must be continued off the real axis. As in the 

lapse case the boundaries are chosen as the branch lines for calculating g(z,p), g(s,p) 

and g(0,P) from g 3 R ( ~ , p ) ,  etc. On crossing these branch lines the phase of g(z,p), g(sJ3) 

and g(0,p) jumps discontinuously from d 3  to - x and g,(z,p), g,(s,p) and g,(O,P) jumps 

discontinuously by 2d3. Using (3.30) and (3.31) solutions (4.3) through (4.10) can be 

continued off the axis as 
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in 

(4.12) 
in region A of Figure 4.3 

(4.13) 
in region B, 

r .  

I- 

(4.15) 
in region D. For z < s 

(4.16) 
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in region E, 

(4.1 7) 
in region F, 

(4.18) 
in region G and 

(4.19) 
in region H. 

From these results and the description of the behavior of the function g(z,P) (and 

therefore q) at the branch lines it should be clear that the solution is continuous at the 

branch lines even with g(z,P) being discontinuous. The transformed solution must now 

be inverted usin'g the numerical method developed by Richards and Attenborough (14). 

i I  .. 
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4.2 Inversion Case Results 

As was discussed above the numerical method originally developed by Richards 

and Attenborough [14] was used to invert the Hankel transformed solution in the case 

of the inversion. This was due to the fact that many rays pass through a given point in 

physical space in the case of an inversion and the number of saddle points which exist 

equals the number of rays passing though that point. Since finding the saddle points is 

the most difficult and time consuming part of that method the approach appeared 

impractical in this case. The numerical method used is identical to that of the lapse 

case as described by Lloyd [ 1 51. 

Only a limited number of cases have been run to date using the solution 

described in Section 4.1 and the numerical inversion technique. Figure 4.4 shows a 
typical case. The results generally show an interference pattern with 6 dB/doubling of 

distance decay out to distances of the order of thirty meters and a more complicated 

behavior beyond that distance but with no significant change in the rate of decay. This 

latter result is somewhat unexpected from qualitative arguments. Experimental data for 

propagation under inversion conditions is quite limited, with the data presented by 

Sutherland and Brown (161 being the major set. However, this set contains only seven 

measurements at a fixed height over a 675 meter distance. No direct comparisons 

have been made but the data also shows what appears to be a 6 dB/doubling of 

distance decay with some interference minima. Thus at least qualitatively the 

agreement appears good. 

Appendix 8 contains a listing of the program for the Inversion case. 
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5.0 CONCLUS IONS 

Approximate solutions of the Hankel transformed acoustic wave equation with a 

particular, realistic and well-developed vertical sound speed (or temperature) profile 

have been obtained for both the lapse and inversion cases. These solution are quite 

complex and exact inversion of the transformed solution does not appear possible. 

Both approximate inversion using contour integration and the saddle point approach 

and numerical inversion have been used to obtain the physical solution in the case of 

lapse conditions. Only numerical methods have been used with inversion condition. 

The lapse case shows the expected behavior: an interference pattern with a 6 

dB/doubling of distance decay within the shadow region; a rapid decrease in sound 

level in the vicinity of the geometric shadow boundary; and approximately a 6 

dB/doubling of distance decay well within the shadow region. Similar behaviors occur 

for both inversion methods but the contour integration - saddle point method yields and 

larger decrease in the sound level on passing into the shadow than the numerical 

integration technique. The origin of this difference has not been determined. The 

contour integration - saddle point method results appears to agree with the empirical 

model of Weiner and Keast [la better then the results of the numerical inversion 
technique. Since the techniques are applied to the same approximate solution of the 

transformed acoustic wave equation the difference must result from the inversion 

techniques. The numerical technique also produces a weak interference-like behavior 

far into the shadow region. This appears to be artifact of the numerical method as is the 

increase in sound level that frequently occurs as the maximum distance for the 

inversion technique is approached. 

Agreement between the results and experimental data is fair within the shadow 
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boundary. The level is predicted well but the location of interference maxima and 

minima are not accurately predicted. This may be due to the poor fit of the temperature 

profile to the measured profile. No data appears to be available that both gives a 

temperature profiles and sound levels in the shadow region. 

The inversion case shows an interference pattern with a 6 dB/doubling of 

distance decay out to distances of the order of thirty meters for realistic temperature 

profiles. Beyond this distance the decay rate appears to remain nearly the same but 

the structure of minima and maxima becomes irregular. This tends to agree with a 

simple geometric argument since "trapped" rays start to reappear in a ray diagram at 

such distances. Little data is available for comparison in the inversion case. 
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7.0 LIST OF SYMBOLS 
I .  

English 

a 
A 
8 
C 

Sound speed. 
Function defined by (2.4) or constant in (3.7). 
Function defined by (2.5) or constant in (3.7). 
Function defined by (2.6). 
Constants. 
Function defined by (2.7). 
Function defined by (2.1 1). 
Arbitary function 
Function defined by (2.10). 
Function defined by (2.25). 
Function defined by (2.26). 
Function defined by (2.27). 
Function defined by (3.8). 
Hankel transform of 5. 
Acoustic pressure with time dependence seperated out, see 

Modified one-third order Hankel function of the first kind, see 
(3.12). 
Modified one-third order H%nkel function of the second kind, see 
(3.1 2). 
4- 1 
lntergal defined by (3.41). 
Zero order Bessel Function. 
Function defined by (3.25). 
Constants 
Acoustic pressure. 
Constant determining the strength of a point acoustic source. 
Horizontal distance from the source. 

(3-1 1 
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r Horizontal distance from the source. 
Function defined by (3.26). 
Function defined by (3.29). 
Function defined by (4.1 1). 
Height of the point source above the ground. 

% 
R, 

R2 \ 
\ 

S 
t Time. 
T Temperature. 
z 
Z 

Height above the ground surface. 
Acoustic impedance of the ground surface. 

Greek 

a 
P 
Y 
6 
tl 

e 
A 

e 

Scale factor for temperature, see (1.2). 
Hankel transform variable replacing r, see (3.2). 
Function defined by (2.17). 
Delta function. 
Function defined by (3.10). 
Angle an acoustic ray make relative to horizontal. 
Limiting ray angle, see (2.28). 
a,/(o a). 

5 Arbitrary arguement 
P Density of the air. 
7 Function defined by (3.27). 
0 Function defined by (2.12). 
a) Function defined by (3.9). 
Y Function defined by (3.29). 
0 Circular frequency. 

~ 
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Corn binat ions 

AT Change in Temperature between the ground surface and 
far above the ground. 

Subscripts other than given above 

I 1,2 or 3. 
0 

P 
S 
Z 

00 Evaluated at infinite height. 

Evaluated at the ground, or a reference value. 
Evaluated at a ray turning point. 
Evaluated at the source height s. 
Derivative with respect to height (9, or gzz) or evaluated at the height z. 
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0 0 0  
0 0 0  
0 0 1  

Figure 1 .l. Temperature as a function of height above the gr-und for different times of 

the day as determined by Best (1). 
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KRU= 8.028 
TI#= 302.0 
EL1 T= 9.732 

Figure 1.2. The present model of temperature as a function of height and a set of 

observations by Butterworth [4). 
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K W l I Z o N T U  DISTANCE 

figure 2.1. The nomenclature used in defining the rays. 
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Figure 2.2. Acoustic rays for i3 lapse case with a = 1.75 rn-l and AT/T, = 0.03 with a 

source at a height of 2 m. 
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Figure 2.3. Acoustic rays for an inversion case with a = 1.75 rn-l and AT/T, = -0.03 

with a source at a height of 2 m. 
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\ 

Figure 3.1. Path followed in complex 93'2 - space as the real part of J3 vanes from zero 

to infinity and the imaginary part of J3 is constant for the lapse case. 
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P =  

Figure 3.2. Sketch of the location of the branch line used for calculating g (z,p) = 

( 93’2 (t$) )a3 in the lapse case. 
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Figure 3.3. Sketch of the three types of physically occuring rays in the lapse case. 

Type 1 rays have their turning point below the ground surface. The turning point for 

type 2 rays is below the source and above the ground surface. Type 3 waves have a 
turning point above the source, this type of ray does not appear in a point source ray 

diagram but occurs in the superposition making up the inverse transform. 

61 



A 

D 
/ 

P O  

E 

Figure 3.4. Sketchs of the regions in complex p-space where the various forms of the 

solution are valid for the lapse case. Part a) is for points above the source, part b) is for 

points below the source. The lines are branch lines for g (O,j3), g (z$) and g (s,p). 
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Figure 3.5. Typical results for a lapse case using the saddle point method only, from 

Cheng [13], as compared to the Weiner and Keast empirical model (1 7J. The solution 

extends only to the shadow boundary at about 68 meters. 
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Figure 3.6. Typical results for a lapse case using the combined saddle pointcontour 

integration method. From Ma (1 2). 

64 



0. 

-10. 

-20. 

-30. 

-40. 

-50. 

-60. 
0.0 10 100 Distance (meters) 

1000 

Figure 3.7. Typical results for a lapse case using the numerical inversion technique. 

From Lloyd [ 151. 
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Figure 3.8. Comparison of the results of the saddle point-contour integration method 
and the numerical technique for a lapse case. 
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3/2 

Figure 4.1. Path followec in complex g3’2 - space as the real part of j3 varies 

to infinity and the imaginary pari of p is constant for the inversion case. 

rom zero 
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Figure 4.2. Sketch of the location of the branch line for calculating g (t$) = 

( g3/2 (z$)  )a3 in the inversion case. 
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Figure 4.3. Sketch of the regions in complex Pspace where the various forms of the 

solution are valid for the inversion case. t h e  lines are branch lines for g (z,Q), g (s,p) 

and 9 (0,P). 
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Figure 4.4. Typical results for an inversion case using the numerical inversion 

technique. 
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APPFNDIX A - The Lapse Case Program 

The material below is from Lloyd (151 and both describes the program used to 

calculate the transformed solution and to cany out the inversion and presents a listing 

of that program. The program is named FFTPRESS and was written to be used on a 

VAX 750. Descriptions are given both of the subroutines comprising the program, of 

the input variables and a set of "helpful'hints" are given that may be useful in running 

the program. The intent of this section is not to describe in detail the operation of the 

program but to allow a somewhat experienced Fortran user to run the code as it was 

created. 

SUBROUTINES 

Input: Subroutine to input the necessary parameters to the main 

program. The following sentences summarize each of the input variables 

in the order they are requested. Tinf is the temperature at infinite height, 

normally 300 K. Tinf is used.to calculate the speed of sound a. Dtot is the 

temperature change from infinity to the ground normalized by the 

temperature at infinity. Dtot is normally 0.025. Alpha is the term used in 

t he  temperature profile defining the altitude at which the temperature 

gradient becomes effective. Alpha is normally 2.5 (meters)". Splref is 

the reference sound pressure level used in the calculations of sound 

pressure level in dB. Omega is the frequency of the sound souroe in 

radkec. Resistance is the flow resistance used in the Chessel model and 

is normally 300 cgs units. Zr is the height of the receiver in meters. Zs is 

the height of the source in meters. Alp is the amplitude of the imaginary 
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component in transformed space. Alp greater than zero is integration 

above the real axis. The product of Alp and the step size AK should not 

exceed 0.01 and may be much smaller. Alp is replace by p in the thesis. 

is used in an analytical function that is subtracted from the sampled 

solution to null the effects of off axis integration. Ns is normally 3. If Ns 

is equal to zero then no subtraction occurs. Ns is replaced by 6 in the 

thesis. Me nonzero signals the inverse Hankel transofrm routine that the 

terms representing the integral extended to infinity are to be included in 

the inversion. Me is also the number of terms to be used and is normally 5. 

Me is replaced by M in the thesis. N1 is the number of points to be used. 

N1 depends on the maximum horizontal distance desired. N1 equal to 4096 

points is a common value. Np and N1 are used interchangeably. N1 must be 

equal to an integer power of two. Delbeta or delK are the step size in 

complex K space. In the program Delbeta and DelK are used 

interchangeably. Delbeta also depends on the maximum horizontal distance 

desired and also on the maximum Beta allowed. This maximum Beta is very 

near to omega divided by the speed of sound. Beta and K are used 

interchangeably in the program and thesis. 

Js 

Region: Subroutine used to determine which of 8 diffferent forms of 

the general solution are to be used. The selection depends on how the 

waves are interferring at that particular value of K. Region calls to 
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subroutine g32all to identify if the complex part of g3I2 has changed sign. 

The sign change indicates a different set of rays are combining to form the 

solution. With each set of rays a different form of the solution is required. 

Hall: Subroutine to calculate the Hankel functions HI and He and their 

derivatives in terms of the Airy functions, AI and BI. Hall calls to Cgbair 

to get the Airy functions needed. 

Ha112: Subroutine to calculate only the Hankel functions. 

Cgbair: Subroutine to calculate the Airy functions. Cgbair uses either 

an asymptotic or a small argument approximation of AI and BI depending on 

the value ofcomplex K. 

Gzalll: Subroutine to calculate the derivatives of the g3/* function. 

These values are used to compute the reflection coefficients. 

Gall: Calculates the g function needed to calculate the g3/2 function. 

Dafb2: Subroutine modified from Attenborough and Richards to 

calculate the inverse Hankel transform using fast Fourier transforms. 

Dafb2 calls to subroutine Zeta to calculate the terms representing the 
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extension of the integral to infinity and to subroutine Fork used to perform 

the actual fast Fourier transform. 

Zeta: Subroutine to compute the value of the integral to infinity. 

Fork: An efficient fast Fourier transform taken from Attenborough 

and Richards program. 

VARIABLES 

Beta: Used interchangeably with K, both are the complex argument of 

the transformed solution. 

Tau: The term T used in the reflection coefficients developed by Van 

Moorhem. 

Sci: The term w u 

Moorhem. 

ed in the ref1 cti 

Ro: The actual reflection coeff i.cient. 

n coeffi i nt developed by V 

R1: The modified reflection coefficient representing refraction. 

n 
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En: The complex argument of the Hankel function. En is a function of 

K (or Beta) and the height of the source or receiver, whichever applies. 

Rlemda: The ratio of omega to speed times alpha. The reciprocal of 

the wave number. 

Zimped: The complex impedance of the ground normalized by the speed 

of sound and the density. 

22 and 23: Heights of the receiver and source, respectively. 

Gbar (K) or Gbar(Beta): The sampled function to be inverted. 

Gbar (r): The inverted solution. The real space answer. 

G: The sound pressure level result. 

Rad: The horizontal distance of the present (Gbar (r) 

Rad2: The logarithm of Rad. 
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HELPFUL NOTES 

1. All units used here are examples only. The only requirement in 

operation is to use a consistent set of units. 

2. The output of sound pressure level and horizontal distance along 

with an echo of input parameters is written to file FOR044.dat in the 

present diretory. 

3. To plot the result at the University of Utah Mechanical Engineering 

Vax system type RUN PLOTPROMPT and the rest is interactive. 

I 4. Basic instructions for use on the University of Utah Mechanical 
I Engineering Vax system are: 

a. Log on using normal sequency of user name and password. 

b. Type @Q to link all necessary files together. Instead of combining 

all files into a large file several small trackable files are used for ease of 

editing . 
c. Type RUN FFTPRESS to begin execution. 

d. Input the variables as requested by subroutine Input. 

e. At completion FFTPRESS will display FINALLY FINISHED. To plot the 

results type RUN PLOTPROMPT. This is a standard plotting program that 

uses the system subroutine Mgraph. The data file name is FOR044.DAT. 

The data file contains 2 columns. The fist column of the data is the 

I logarithm of the horizontal distance. The second column of the data is the 

sound pressure level. 15 lines are used at the beginning of FORC44.DAT to 
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echo the input parameters, therefore tell PLOTPRMPT to begin accepting 

data at line sixteen of file FOR044.DAT. The plot will display on graphics 

terminals only. Mgraph asks if a hard copy is desired when crt plotting is 

finished. PLOTPROMT has autoscaling capability that can be turned on or 

off and offers many other self instructing options. Mgraph creates files 

named HPPLOT.HPL, however, it is recommended to change the name as soon 

as possible to avoid deletion of previous plots. If a hard copy plot is 

desired after exiting PLOTPROMT type PLOT then the file name. 

f. Log off with command LO. 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PROGRAM mms 
. ~ * ~ ~ + + H c * * ~ ~ * * * * + * * * * ~ ~ ~ ~ * ~ ~ ~ ~ ~ *  

* 
* 

MAIN ROUTINE TO DEVELOPE THE GBAR(b,Z) TO RE INVERTED 
THE MAIN WILL INPUT THE "EZESSARY CONSTANTS,CAXULATE mA, 

SCI ,g ,z1IE "KEL FUNCTIONS AND FINALLY CALCULATE GBAR(b,Z). 
SELECT FORM OF SOWTION CALL THE SUBROUTINES AND COMPUTE RO,TAU, 

* ~ ~ i l + ~ ~ i f i H " k ~ ~ + + ~ ~  
* 

SUBROUTINES: 
G32ALL: 

R E I O N  : 

GZALL: 

GALL: 

w: 
HALL2 : 

DAFB2 : 

ZETA: 

FORK: 

INPUTS : 
TINT: 
DTOT: 

SPEED: 
OMECA : 
Z: 
S: 
SPLREF: 

RES1 STANCE: 
ALP: 
NS: 
ME: 
N1: 
DELIETA: 

FINDS "E FUNCTION gA3/2(b,z) USED TO DETEMINE 

GIW3J ga3/2 DEX'ERMINES WHICH REGION OF 

FINDS gz(+,Z)=dg/dZ AKD THE c113w DERIVATIVES 

WHICH REGICll OF SPACE ITWENT BEl!A IS IN. 

SPACE PREWT BETA IN* 

USED TO FIND K,TAU,SCI. ALSO FtE"S EA(b,Z) 
THAT IS A3 TKE ARGUMENT l3lR "KEL 
FUNCTIONS. G U L L  C U S  TO GAIL TO GET 6. 

C w m  *g  FUNCTION .' 
C h W  'ME HANKEL FUNCTIONS FROM AIRY 

CAI.CULATEs ONLY "E HANKEL FUNCTIONS NOT 'IIIIE 

G I V D J  GBAB(b,Z) UslEs MECHOD DEVEWPED BY 

FUNCTIONS. CAIJS CGBAIR To GET AIRY FUNCTIONS 

DEUVATIVES AS HAIL DOES. C A X U  CGBAIR Also. 

MCHARDS AND ATTDIBOROUQI To mRM THE 
HANlCEL INVERSION. USES suBwOUTl3W ZETA,=. 
DAFB2 MAKES SEVERAL CORRECTIONS TO A GENERAL 
FFT. THE STANDARD CODE IS TAKEN PROM F U O S  
AND ATTBXBOROUGH PROGRAM. 

F0-M 'BE SUM OF ME TWMS WHICH A.PPROXTMATES 

A VERY FAST FF'T USED TO PEIUQRM ACTUAL 
G3AFi(b,Z) TO INFINITY IN THE BETA SPACE. 

INVERSIOE OF GBAR(b,Z) FROM THE BETA SPACE. 

THE TEN.PEUTUHE AT VERY LARGE Z 
THE DELTA T/T PARAMETER REPl3EX"DG THE 

T I B P E X A T ~  GRADIENT. 

GRADIENT. 
PARAMFTB? USED I N  DEFINITION OF TBlERATURE 

S P m  OF SOUND AT T(LNF) .  
FREQUENCY OF SOUND I N  RADIANS/SE. 
FIXED DISTANCE TO THE OBSIWER 22 IN PROGRAM. 
FIXED DISTANCE TO "E SOURCE 23 IN PROGRAM. 
REFERENCE SOUND PRESSURE LEN% USED TO COMPUTE 
THE SOURCE STRENGH Q. 
GROUND RESISTANCE IN THE CHESSELL MODEL. 
THE TEFM USED TO INTERATE OF" REAL €ETA AXIS. 
PARAMETEI IN THE ANA.LY!PICAL FUNCTION I N  DAFB2. 
PARA"El  TO PRODUCE SUM "0 I"INITY I N  DAFB2. 
S I Z E  OF ARRAY TO BE lNVlXm. 
STEP SIZE USED FOR BETA AIS0 DELK I N  DAFB2. 

NOTE: K AND BETA AND DETX AND DELBETA ARE USED I N T E R C H A N G W Y  
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C 
c VARIABLES: 
C BGTA: INDEPINDE" VARIABU I N  SPACE. 
C TAU : TAU DEFINED IN P U B  BY VAN MooRHp(I. 
C SCI: XI DEFINED IN PAPm BY VAN MOORtmul. 
C RO: RO CONSTANT DEFINED IN VAN MOORHD!. 
C R1: R1 CONSTANT DEFINED IN VAN MOW. 
C m: "KEL FUNCTION ARGUMENT. 
C m A  : oMEGA/(ALPHA+sPEED). 
C BRO: BFLANCH CUTS I N  !I"E BETA SPACE ASSOCIATEXI WITH 
C m: !E€E SQUARE ROOT AND 3/2 ~~ FUNCTIONS 

C ZIMPED: GROUND IMPEDENCE fiORMALIZED BY DENSITY AND SPEED. 
C GZ: dg/dZ FROM'GZALLl. 
C GZZ : d2g/dZ2 FROM GZALL1'. 
C ORB3 DERIVATIVES PER !&IS NOTATION 
C 21 : REFERDICE DISTANCE O..O. 
C 22: 2 As mm. 
C 23: S As ABOVE. c "-H**fltw***+)+CW+++)+MHM-++++MHCM+C)HC 

C m: INgANDgTHREEW. 
C BRW: BRApcH & AT oMm/sPEED. 

IMPLICIT DOUBLE PRECISION( A-H, C-Z) 
INTEE3 IREGION 
COMMON /IN!!!EC/*NS ,M&Nl 
COMMON /AFE32R?/ ALP,DELBECA 

COMMON /CONSTANT2/ ALPHA,DToT 
COMMON /CONSTA#T3/RIBIDA, Q 
COMMON /CONSTAlfT4/CMPI, CK, RO, R1 
COMMON /KEIGHT/ Z1,22,23 
COMMON /CETA/Zl EN, Z m ,  Z3E3 
COMMOX /BRANCH/BRO, BRS, B E ,  BRW 
COMPLE>;*16 BETA, GZ, GZZ 
COMPLZX*l6 H2,H21 
COMPLEX*16 EN ,'Z 1 IN, Z2EN, Z m  
CoMpmM*16 131 ,H11 
CoMpuEx*16 CK,TAU,SCI,ZIMPED 
COMP~*16 DUM1 , D W , R O , R l  ,CMPI 
CoMpLEli*l6 GBAR (32768) 

Q=. oooO2*4. *3.1415926*4.67Do+( 10. "( SPLREF/20. DO) ) 
SPEED=DSQRT ( 1 .41)0+287. DOVINF) 
PRINT *, 'THE FOLLOWING IS AN ECHO OF TKE INPUT ' 
PRINT *, IN THE FOLIXXJING ORDEIi ALP DELTA ME Np DELJ3ETA' 
PRINT *, 'SPEED OMEGA ALPHA lYl!OT Z1 22 Z3 RESISTANCE' 
PRINT *, 'TINF,SPIAEF' 
pRwT*' t ! SKIP A LINE 

PRINT *,ALP, NS ,ME,Nl, DEIIBE;TA, SPEED, OMEGA,ALPHA, LYNX! 
PRINT *, 21 ,22,Z3, RESISTANCE, TINF, SPIREF 
WRITE(44,*) 'EXXO OF INPUT ALP NS ME DELBECA SPEED OMEGA ALPHA 

COMMON /CONSTANTI / SPEED, OMM;A 

cm LNPUT (T m, SPUIEF, ~ I S T A N C E )  

PRINT *:,THESE v m  m AISO W R I T T ~  TO FILE 44' 

& DTOT 21 22 23 RESISTANCE TINF SPIREF' 
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WRITE(44,*) ALP,!JS,ME,Nl ,DELBETA,TINF',SPIREF,OKEX;A,ALPHA, 
& D", 21 ,22,Z3, RESISTANCE, Q, SPEED 

PI=3.1415926 
RLPIDA=OMEGA/(SP~*ALPHA) 

cMPI=(O.O, 1 .Do) 
C FUNCTIONS TO COMPUTE 'ME COMPLEX JMPEDENCE FROM CHISSELL MODEL 

? FR=OMEGA/2 DO/PI 
RAT IO=FB/REsI STANCE 
R=l .+g.OBDO*RATIO"(-.75W) 
&-I 1 .gDo+RATIO"(--7jDO) 
ZIMPED=DcMpIx (R,X) 
BRO&MZA/SPEZD*lBQR!l!(l .DO/(1 .DO b ALPHA+Zl+DTOT)) 
ERZ=OMECA/SPEED~~'(  ( 1  .mAIsfIA+Z2)/(1 .DCW&PHA.Z2+I>rOT)) 
EB--A/SPEED*lBQR!l!( (.I .DOtALpHA+Z3)/(1 .DO+ALpAA*Z>DTOT)) - 
BRW--OMECA/SPEED 
PRWT *,' ' 
PRINT *, I  ' .\ 

PRINT *, 'THE BRANCH CUTS ARE',BRO,BR2,rn,BRW 
VRIrn(4Q,*) ' T H E  BRANCH CUTS ARE',BRo,BRZ,BRs,BRW 

. .  
* t  * 

DO l , I=l ,Nl  
BETA=DCMPU ( DFWAT (1-1 ) , (-ALP) ) *( D ~ A )  
IF (ABS(BE;TA) .LE. . m l )  "E8 

END IF 

21 m=m' 
wM1 =Gz 
DuM2=Gzz & 

CALL G U L L 1  (Z~,BETA,GZ,GZZ,EN) 
Z2lW=EX 
CK4/12. DO/CMPI/( R I D I D A H  (2. DO/3. DO) ) *l. O/( CDSQRT (GZ ) ) 
CALL GZALLI (Z3,BETA,GZ,GZZ,R?) 
Z3IiX=EN 
Cx=CK*l .DO/(CDSQKC(GZ)) 
TAU = A L P H A * ~ A 4 l Q I  / 2 
sCr&IMPED*( (3. /2. )"( 2. DO/3 DO) ) * ( (RLIPlDA)"( 2. DO/3. DO) )*DUM: 
CAI;L HALL(Z1 EX,H2,H21 ,H1 ,Hl1) 
DUM1 =TAU*Hl iCMPI+SCI*Hl~ 
DW=TAU+H2+CMPI +sC I *H21 
RO=-DUMl /DUM;! 
DUMl =CMPI*PI/6. DO 
R?=(CDEXP(-DUM1 )*(CMPI*RO))/( (CDEXP(DUM1)+*2.DO)+(R0*2.DO)) 

&TA=DCMPLX ( . OOOOOO1 DO, (-ALP) ) *DELBETA 

CALL GZAU (z i  ,BEIA,GZ,GZZ,~) 

pIpED*DUM2/DUM 1 

CALL RM;ION(BETA,LREGION) 
GO TO ( 1 O , x ) ,  30,40,50,60,70t 801, IREGION 

c *H+++*- REGION 1 BEINS rn FOR ~ 2 x 3  OR z>s ++***+-IC* 

10 CONTINUE 
CALL HATIL2(Z3EN,W,Hl) 
DUMl =H1 +RO*X2 
CALL HALL2(22IN,W,Hl) 
GBAR(I)€KW*MIMl 
m 5 0 0  

C -**Mu+* R E I O N  2 mINS HERE FOR Z2>Z3 Ow Z>S u-H***+-ICH 
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20 CONTINUE 
CALL HALTa(Z7EN,H2,Hl) 
DUMl =H1 +R1 *H2 
CALL HALL2(22EN,U,Hl) 
GBAR ( I ) =CKW*DUMl 
COT0500 

CALL HALTJ~(Z~”,H~,H~ ) 
DUMl=(Hl+RW)*Rl%DMP(CMPI*PI/3.DO) 
CALL HALL2(Z2EN,H2,Hl) 
GBjqR( I)=CK*H2*DUMl 
GOTO 500 

CALL HALL2(ZjW,H2,Hl) 
DUM1 =CDExp(CMP~*PI/3~DO)*R1 *(Hl +RO*H2) 
CALL HALL2(ZZEN,H2,Hl) 
GBAR ( I ) --CK*DUMl’*( HE?+( CDMP (CMPI *PI /3. DO) *Hl ) ) 
GOT0500 

c -++-H  ION 5 BEGINS m FVR z2<23 m z<s - 

c -- REION 3 =INS rn mi 22x3 m 2)s ++- 

30 CONTINUE 

c 

C RM;ION 4’BEGINS HERE FOR 22>23 OR Z>S .- 40 CONTINUE 

50 CONTINUE 
CALL HAIJ2(Z2EIJ,H2,HI) 
DUMl =Hl +RO*HT 
CALL HAJJL~(Z~N,H~,H~) c GBAR (I --CK*EI~*DUMI 
GOTO 500 

CALL HALL2(Z2lN,~,Hl) 
DUMl =H1 +R1 *H2 
CALL HALL2(23IN,H2,Hl) 
GBAR ( I ) =CK*H2*DUMl 
GOT0 500 

c -*- REION 6 BEGINS rn FOR 2 2 ~ ~ 3  OR z<s -* 
60 CONTINUE 

C *+w+t+++++ REGION’? BEGINS HERE FOR Z2<23 OR Z<S mmc*+++* 
70 CONTDTUE a. 

DUM1 =CDEXP(CMPI+PI/3.DO)*Rl 
CALL HALI2(22Dl,H2,Hl) 

CALL HfiLL;!(Z3IN,H2,Hl) 
GBAR( I)=CK*H2*DUMl 
COT0 500 

DUM1 =CDEXP(CMPI*PI/3.DO)*Rl 
CALL HALL2(Z2EN,H2,H1) 
DUM1 =DUM1 *(Hi +R@H2) 
CALL IiALI2(23EN,H2,Hl) 
GBAR ( I ) =CK* ( H1 WDEXP ( CMPI *PI /3. DO)+H2)*DUMl 
coTo500 

DUMI =DUMI *(HI +RO+H~) 

C -+++** R E I O N  8 BEINS HERE FOR Z2<Z’j OR Z<S +++++***H 

83 CONTINUE 

C 
C 

RID OF GBAR(BETA) CAJXIULATIONS BASED ON REIONS DETHWINED 
MULTIPLY BY BETA ONLY TO MATCH VAN M W M  DEFINITION TO 
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C RICHARDS AND ATTB4BOROUGH. 
500 CONTINUE 

GBAR ( I )&BAR ( I )*BGTA 

CALC DAFB~(GBAR) 

1 CONTINUE 
PRZNT *,' LAST BETA EXCUTED IS',BETA 

Do 2 ,1=1  ,N1/2 
W - 2 .  W P I  *DFILIAT ( 1-1 ) / ( DFlllAT (N1 ) *D-A) 
IF(RAD.LE.O.0 ) !l!HR? 

mIF 
Gar0 5 
RADZ=DIXX310 (RAD) 
0-20. DO*DIXX;I O( ABS ( $BAR( I ) ) ) 
WRITE(44,9093) RAD2,G 

PRIN" *,'FINALLY FINISHJD' 
9093 R334AT(%,X18.8~ 

STOP b 

END 

5 CONTLNUE 
2 CONTINUE 

C 
C 
C 
C .. 
C + + ~ + k + + t + + + ~ ~ * ~ ~ * * * ~ ~ ~ ~ ~ ~ ~ ~  

SUBROUTINE I@"l (TINT, SPLREFJIESISTANCE) 

C THE WRpOsE OF THIS ROUTINE IS TO INPUT AIL NECESSARY PARAMETERS TO * 
C THE MAIN ROUTINE. TEE DEFINITION OF EACH PARAMEW3 WILL RE DEFINED * 
C AT ITS RESPECTIVE INPUT- * 
C * H  + * ~ * * * + + H H H " t + ~ * ~ ~ * * * * * * ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ * ~  

IMPLICIT DOUBLE PRECISION (A-H,o-z) 
COMMON /INTEG/ NS,ME,Nl 
COIllMON /AI"B2IN/ ALP,DIZLBETA 
COMMON /CONSTANT1 / SPEED, OMEGA 
COMMCW /CONST!&'T2/ ALPHA,DTOT 
C O W 3  /CONWANT3/ RUNDA,Q 
COMMON /CONSTANT4/ W I , C K , R O , R l  
COMMON /HEIGHT/ Z 1 , 2 2 , 2 3  
COMMCN /mA/ 21 EN, 22EN, 23EK 
COMMON /BRANCH/ ERO,BRs,BRZ,BRW 
WRlTE ( 6 , 8 9 9 )  
WRITE( 6,900 
READ *, TINF 
WRITE ( 6 , 9 0 1 )  
READ *, DTOT 
WRITE (6,902) 
READ *( ALPHA 
WRITE (6,903) 
READ *, s m  
WRITE (6,904) 
READ +, OMM;A 
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THE TlNPERAm CHANGE DELTA T/T( INF) . 
THE TENPERATuRE PROFILF: CONSTANT ALPHA. 

THE REFERENCE SOUND PRBSURE LEVEL. 

THE ANGULAR mmcy IN RADIANs/sEc. 

THE CXESSELL MODEL FIBW RESISTANCE (cgs) 

RECEIW AND SOURCE HEIGHTS SEPARATED 

FOLLOWING ARE " I I C  VARIABL;Es. 
BY A COMMA.,/) 

& ,//,12X,39H DWUT ALP. THE IMAGWARY PART OF BETA. 
& ,/,12X,43H NOTE P O S I T I V E  V A L U E  ARE ABOVE 'ME AXIS. ,/) 

933 

909 

910 

91 1 

FORM.& (X, l 'Z,46Y INPUT THE DELTA PAFWTETIX USED IN LNTECRATION 

FORMAT (X,12X,46H I" THE NUMBER OF TERMS I N  SUM TO INFINITY. 

FORMAT ( X , 1 2 X , 4 6 H  INPUT THE NUMBER OF POINTS TO BE USED. 

FORMAT (X ,  12X,46H INPIJ? THE STEP SIZE IN EEPA (OR K )  SPACE. 

RETURN 
END 

& , / I  
& ,/> 

& 9 /> 

& , /> 

C 
C 
C 
C 

C * * + - + ~ * + + * + + * * * * * * ~ * * * * * * * * * * + + * * * * * * * ~ ~ ~ * * ~ * * * ~ * * * * * * * ~ ~ ~  
SUBROUTINE REGION( BETA, IRECION) 
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IMPLICIT DOUBLE PRDCISION (A-H,O-2) 
INTER3 IXlLJBLE IRD3ISION K1 
COMPLEX*16 BETA,G32Cl ,G3X2,G3X3 
COMPLEXY 6 G32PI,G32PI2,G32PI3 
COMMON /IN"IB/NS,ME,Nl 
COMMON /AFB2IN/ALP,DEZBEl!A 
COMMON /CONSTANT1 /SPEZD,OMECA 
COMMON /CONSTANT2/ALPHA,M'Crr 
COMMON /CONSTAN!l!3/F&M)A, Q 
COMMON /CONSTANl?4/@lPI ,CK,RO,Rl 
COMMON /HEIGHT/ 21 ,22,a * 

COMMON /CEl!A/Zt EN, Z m ,  Z3ZN , 
COMMON /BRANcEI/BRopERS,BRz,~ 
INTEcm m 1 0 N  .' 
CALL G32AU(Zl ,bIZ'A,G32Cl) 
CALL G32AIIL( 22, BETA, G32C2) 
CALL G 3 W ( Z 3 , B E T A , C X 3 )  

C 
c 
C 
C 
c ! r K E R M ; I o N s A R E F o u N D I N ' M E ~ m ~ .  

IN THE EVENT THAT BR2 OR RRS AND BRW ARE YERY CWSE THE FQLLOWING 
IS USED TO INSURE m o P m , m I o N  IS CHOSEN. w1 AND w2 ARE s m  
WEIGHT' FACTORS To, DET"E WHlCH DIRZZTION TO EVAIUATE RDXONS. 
BY WEI(;IPTING !CHE SFLETION DEPENDING HW CIL)GE BETA IS To BRW 

POSMAX=MAx( 22,23) - 
4 

w1=1 .o 
w2=1 .o 
DUD=OMEGA/SPEE~ . 

DUD=DUDWl+DUDW2+DsQflT( (1 .O+ALPHA*posMAx)/( 1 +ALPHA+posMAx+DTOT)) 
DUD=DUD/2 
IF(Z2.LT.23) THEN 

EKD IF 
GOT0 120 

C FOR *(Z2>33 OR Z>S)** THE IQLLOWING IDl!Wl?IFY RESIONS OF SPACE 
AI1 =DIM4G(G32C1) 
AI2=DIMAG( G32C3) 
AI3=DIMAG (G32C2 ) 

IF(REAL(BFTA).GT.DUD) THEN 
GOT0 110 

IF(AI3.GT.O.O) !X'" 
END IF 

IREGION=4 
GOT0 150 

END IF 
IF(AI2.GT.O.O) "I34 
I R S I ~ = 3  
m o  150 

IREGION=2 

B?D IF 
IP(AI1 .GT.O.O) !I!i€IB 



. 
/ 

GOT0 150 

IREGION=l 
GOTO 150 

rnION=l 
GOT0 150 

rF(AI2.m.O.o) 'MEN 
XREION=2 
COT0 150 

IRatION=3 ., 
cor0150 

i t  . END IF 
ITIM;ION4 

E 3 D  IF 

110 CONTINUE 
IF(AI1 .L!I'.O.O) aW 

mIP 

i ENDIF 
IF(AI3.U .O.O) 'THEN ' 

GOTO 150 ? 
C F0RH(Z2<Z3 z<S)* !DiE*l3XUlWING IDENTIFY REGIONS OF SPACE 
120 CONTINUE 

AI1 =DIMAG(G32Cl) 
AI2=DIMAG( G32C2) 
AIJ=DIMAG( G32C3) 
IF' (REAZI(REM).GT.D;GD) m 
GOTO 130 - 

mIF 

IF (AI3.GT.O.6) TIiEN 
IREGION=8 -; 

GOT0 1% 

IREGION=7 
Gar0150 . 

ENDrF 
IF (AI2.GT.O.O) THEN 

""if IF *( 1 .GT:O.O) THEN 
IREGION=6 
m o  150 

E ION=^ 
E N D I F  

GOT0 1% 
130 CONTINUE 

IF (AI1.LT.O.O) THEN 
IRECION=~ 
GOT0 150 

IRM;ION=6 

END IF 
IF (AI2.LT.O.O) THEN 

m o  150 
END IF 
IF (AI3.LT.O.O) !I!" 
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IflEx;I ON =7 
COT0 1 5 0  

DID IF  
IRM;IQN& 
COT0 1 5 0  

150 CONTINUE 
mURN 
m 

C 
C 
C 
C 1 

SUEROUTINE G32AI;L( 2, BCTA, G32C ) 
C ~ i C - W H W H ~ ~ ~  

* 
* 
* 
* 

.' C* 
G 3 2 A L L - C m T k  $3/2 RJNCTION C* 

C* 
C* i 
C V H + H H P V - H M -  

- t  . .' 

IMPLICIT DOUBLE PFUEISION (A-H,O-2) 
CoMpLM*16 BETA, PHI, S W l  , SQRT2, Foo , G32C, MODLM; 
COMPLEX*16 S 1  ,A,B,S 
COMMON /CONSTANT1 /SPEED, OMEGA 
COMMON /CONSTA!K'2/ALPHA, DTOT 

A4=1 .+ALptIA*z+moT 
B=I .-( (SPEED*BETA/OMEGA)*(SPEED*~A/OMIGA)) 
si =swi ( B I G T A , ~ )  
S S W 2  (EiETA ) 
P H I S 1  /(S*DsQRT(AA)) 
IF( D!l'OT.EQ. .O.OR.CDABS( 1 .-PHI ) .LT. 1 D 4 )  D E N  

ELSE 

ENDIF 
G3x4SQRT (AA)*Sl-. 5*DTOT*Foo/S 
RETURN 
END 

COMMON /BRANCH/BRo,BRs,m,m - 

Foo=.O 

Foo=MODIxx;( ( 1  .+PHI)/(  1 .-PHI)) 

C 
C 
C mLN 
C 

OF F"CT1ONS USED ABOVE. 

c ~ + + * + + i H t ~ ~ * * * * * * * * * * * * + + * * * * ~ * * * * ~ * ~ * * + , ~ * ~ ~ * *  

c ***********ff*****il+*~***~*il+*ffff*H*~*****~H**~**~ 

* 
* C SQwrl AND SQRT2 ARE FUNCTIONS TO CALCULATE =(BETA) G I W  

C DESIRED BRANCH CUTS AND DIRECTION +IMAGINARY OR -IMAGINARY. 

FUNCTION SQRTl (BETA.2) 
IMPLICIT DOUBLE PRECISION (A-H,O-2) 
C W L M * 1 6  BETA,AA,SQtrrl 
C W O N  /CONSTANT1 /SPEED, OMEGA 
COMMON /CONSTANT2/ALPHA, MVl" 
AA=I .-( ( (SPEED/OMK;A)*BETA)*( (SPEED/OMEGA)*B~A)) 
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€ E 1  .+ALPHA*z+moT 
BRAN1 =(oMEGA/SPEED)*DSQRT( ( 1  .+ALPHA*Z)/( 1 .+ALPHA*Z+m)) 
IF ((DREAL(BETA) .GE. BRANl) .AND. 

1 (DIMAG(BFTA) .LE. 0.0)) THEN 
SQIU'1 =-CDSQRT(AA*k-DToT) 

ETSE 

IN€) IF 
sQKrl=CDsQRT(AA*BB-rn) 

RETURN 
m 

I C 

C 8 

C ,' 

C i. 

FUNCTION SQKl'2 ( E T A )  
IMPLICIT DOUBLE PRqCISION (A4,'O-2) 
COMPLEX*16 BETA,$,SQRI'2 
COMMON /BRANCH/ O,BFIs,BRz,BRw 
COMMON /CONSTANT1 /SPEED, OMEGA 
COMMON /CONSTANT2/ALPHA. DTOT 

AA=I .-( ( (sPEED/oMEGA)+BE~A)*( (SPEED/OMEX;A)*BETA)) 
IF ((DREAL(BE!l'A) .GE. BRW) .AND. 

1 (DIMAG(BFTA) .m..o>.3 THEN 
SQRT2=4DSQRT (u) 

ELSE c 

END IF 
m2=cDsQR!r (AA)  

- mum 
END .. 

C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 

FUNCTION.M@lxx; COMpilTEs THE IQG OF BETA GIVEN DlRECTION AND 
IDCATION OF ERAKH CUTS. 

* 
4t 

--*--%MM--**- 

FUNCTION MODLOG (QUAN) 

COMPLEX* 1 6 QUAN , MODLOG 
IF ((DREAZ(QUAI4) .LE. 0.0) .AND. (DIMAG(QUAN) 

IMPLICIT DQUBLE PRECISION (A-H,o-z) 

1 .GE. 0.0)) THEN 
MODUX;=6DI& ( QUAN ) +DcMPLX (0.0, -29 1 41 5927 ) 

ELSE 
MODlQGdDLOG( QUAN) 

END IF 
RETURN 
m 

IND OF FUNCTIONS USED ABOVE. 
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C 
ci"t-*- M-wH*- 

C HANKEL FUNCTIONS AIRY PUNCTIONS. 
~ * H H * * C * H ~ * c + M " ) i " t ~ + - + + + + ~ ~ ~  

SUBROUTINE JiALLt(Z,H2,H21 ,H1 ,H11) 

c HALL rn SUBAOUTINE CGBAIR To CALCULATE 1/3 ORDER * 

IMPLICIT DOUBLE PRDXSION (A-H,O-2) 
CXMRXX*16 2,AI ,BI,AIP,BIP,K,KS,Hl ,H2,Hll ,H21 
coMpLM*16 ARG,CI 

PI= 3.141 592654Do 

K= (lZ.DO)H(l .D9/6.po)rCDEXP(ARG)' 
KS= DCONJG(K) 
CALL CGBAIR (-2, AI , BI , AIP; BIP ) 
H1= K*(AI-CI*BI) w= KS*(AI+CI*BI).,' t . 
Hll= -K*(AIP-CI*BIP) 
H21= -E*( AIP+CI*BIP). 
REruRN 
m 

CI= mPIx(o.Do, 1 *Do) 

ARG= DCMPLX( 0. Do, -PI/6 Do) 

C 
C 
C 
C 
c M-+--w- ++u+*- 

C CUULATE AIRY F"CTI0NS FOR CoMPLEX*16 ARGUMENT 
C REP. HANDBOOK OF MA-TICAL RJNCTIONS, ABRAMOWITZ AND S!l!EGUN. * 
c E": C CAJLUUTE ARGUMZX(Z)  AND ABSOLUTE VA.LUE(Z) * 
C IF /Z/ LT 6 
C 'MEIJ USE E@. 10.4.2 THRU 10.4.5 FOH AI,BI,AIP,BIP 
C 10 ELSE IF ARG(Z) LT PI/3 
C "Eli CALCULATE ZFTA(2) * 

- 
SUBROUTINE CGBAIR(Z,AI ,BI,AIP;BIP) 

* 
.. 

* 
* 
* 

USE EQsr 10.4,..59, 10.4.61, 10.4.63, 10.4.66 FOR AI,BI,AIP,BIP 

USE EQS. 10.4.60, 10.4.62, 10.4.64, 10.4.67 FOR AI,BI,AIP,BIP 
* C 

C 20 ELSE CUULATE ZETA(-2) 
C 
C ENDIF 
C ENDIF 
C EXIT m * C c **it******** * ( H C H  **+*** *********++*~ i H " t * * * i l  H * + + * + * H ~ H +  

* 
* 

WLICIT DOUBLE PRECISION (A-H,O-2) 
CoMpLM*16 Z , A I , B I , A I P , B I P , Z E ; T A , C Z F T A , Z 1 4 , S U M 1 , S U M 4 ,  
ZE'IIAP, FACT1 , FACT2, SN, CS, ~ , F P E R M ,  G M ,  GPTm,P,FP, G, GP, 23 

DIMWSION C (21 ) , D( 21 ) 
DATA C1 ,C2, PIRT, PI4/-3550280539DO, 25881 % o m ,  1 -?724538!51IXl, 
7853981 635DO/ 
DATA C/1 .DO, . &9444444444444DO, 

coMpLM*16 VZEl'A, VZmAP 

-0371 33487654321 DO, 00379930591 27800D0, 

. 



3 

5 
4 

C 
C 
15 
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1 

6OOo 
2 

C 
10 

C 
C 
C 

11 

C 
C 
C 
C 

20 

CONTINUE 
PRINT m, z 
FORMAT(/' 2='2314.5,' ERROR IN CGBAIFI, NONCONWGDICE') 
AIS1 +F-C2+G 
AIP=Cl *FP42*CP 
B I = 1 . 7 3 ~ ( C l * F + C 2 ~ )  
BIP=1.732050W3XP(Cl *FPiC2"GP) 
GOT09999 
l W " I C  MPANSIONS POR /Z/ LARGE 
SIW=l .Do 
SUMl=O.DO 
suM2=o.Ix) 
SuM34.Do c 

SuM4=0.D0 I 

IF(AES(ARGZ).GE;PW) Go TO 20 , 
/ARG(Z)/ LE PI/3 . t 
JQS. 10.4.59, 10.4.61, 10.4.63, 10.4.66 

ZETA=CZETA(ABSZ, ARGZ ) * 
Do 11 I=1,12 
K=I-1 
ZETAP=ZETAwK 
SUM1 =SUM1 +SIGN% ( I ) / Z ~ A P  
SUM2=SUM2+SIGN*D ( I ) /ZETAP 

SUM4=SUM4+D ( I )/ZETA? 
SIGN=SIGN 
21 4=ABsZ++. 25~o+~cMPix( COS (ARGZ/4 Do), SZN(ARGZ/$ DO) ) 
FACT1 = sDo+Mp (:ZETA) / ( PIRT+Z14) 
FACT&. 5DO+EXP(-ZETA)*Z14/PIRT 
AI=FACTl +SUM1 
A I  P=-FACTZm!Z 
FACT1 =EXP( ZETA) /( PIRTq14)  
FACT2=m( ZETA)*Zl4/PIRT 

\ 

PIBy3=3 141 5926DO/3 Ix) *: 

J, 

suM3=suM)tc (1 1 / z m p  - 

Go To 9999 

/ARG(Z)/ GT PI/3 NOTE CHANGE ABOW 
EQS. 10.4.60, 10.4.62, 10.4.64, 10.4.67 

C O N T I r n  
ARGZ=ATAN2 (-DIMAG (2 ) , -DREAL( Z ) ) 

VZETA=l. DO/ZE2A 
I l I L l O  

ZE2A=CZETA ( ABS2 , ARGZ ) 

Do n I= l ,UL 
K2= (1-1 ) *2 
J=K2+1 

VZEl'AP=VZE2A"K2 
SUM1 =SUM1 +SIGN% (J  ) *VZETAP 

. 
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. 21 

9999 

C 
C 

W=SUM2+( SIGN+c( J+1 )+VZETAPVZETA) 
SUM3 =suM)t ( S IGN*D (J ) *VZETAP ) 
SUM4=SUM4+( SIGN*D( J+1 )*VZGTAPVZFTA) 
SICN=SIGN 

FACT2=214/PIRT 
SN=SIN( ZmA+PI4) 

AI=FACTl *(sN+SuMl -CS+suM2) 
AI P=-FACT2* ( CS+suM)esN+suM4) 

BIP=FACT2*( S N ~ S ' h J M 4 )  
RETURN 
EM) 

CS=CoS(ZE?A+PI4) 

BI=FA'CTI *(cswi +SN+SUM~) 4 

,* 

* 
i ?  . 

C BM;IN OF FUNCTIONS US@ ABOVE 
C 
C 

FUNCTION CZFTA ( ABSZ, ARGZ) 

COMPLEX*l6 CZETA 
ARG=ARGZ*l.5M> - 
CZETA= ( ABSZ+, 1 5DO *DCMPLX ( COS ( ARG ) , SIN ( ARG ) ) * .66666666666667DO 
RFTURN 
END 

IMPLICIT DOUBLE PREISIOI? (A-H,O-2) 
I 

C L 

C 
C OF FUNCTIONS US&) AFbVE. 
C 
C 
c ~ ~ ~ ~ ~ U - i t ~ H ~ ~ ~ ~ ~  

C GZAI;Ll C W T E S  ALL !WE PARTIAL DERIVATIVES * 
C OF THE g PZTNCTIQN. * c U - i t * * * * ~ * * * M I * + + * * ~ * ~ + + * * * * * * * * + + + l C ~ ~ * * ~ ~ ~  

SUEROUTINE GZALCl(2, BETA, GZ, GZZ, IN) 

IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
COMPLEX it 1 6 BETA, GZ , GZZ , G, GB, GEE, SQRT 1 , E8 
COMMON /CONSTANT1 /SPEED, OMEGA 
COMMON /CONSTA"Z/ALPHA, DTOT 

A=l .+ALP%+Z+DTOT 
BFUtN=OMM;A/SPEED+SQRT ( ( A-DTOT) /A) 
IF (DREAL(G).LE. .O.AND.DIMAG(G).GE.O.) I!" 

CALL GALL(Z,BETA,G) 

SI=-1 . 
SI=1. 

EISE 

ENDIF 
GZ=SI*2 *ALPHA*SQR!l!l (BETA, 2) /( 3 .  +CDSCBT(G*A) ) 
C=2 *ALPHA++3. Do*DToT/( g*A++Z. DO) 
GZZ=C/(GZ+G)-. 5%Z+V. DO/G 
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REruRN 
m 

C 
C 
C 
C 

C-- 

C- 

SIIBROUTINE GAI;L(Z,BETA,G) 

C GALL EVAIUATB TBE g FUNCTION * 

CoMPIlEx *16 G,BlEA,G32 
COMMON /CONSTANTl/SPED;wA 
COMMON /CONSTANT2/ALWA ,' DTOT , 
CALL G32ALL(Z,BEl!A&32)- 
G=CDEXP( 2 /3. +cDIb3( G32) ) 
IlEmJRN 4 I 

m 
C 
C 
C 
C 

c w € * * M W i H f i t ~ ~  +HHHHH"I 
C HALL2 USES SUBROUTINE CGBAIR TO CAIrcuLATE 1/3 O D ?  * 
C HANKEL FUNCTIONS WOM AIRY FUNCTIONS. NOT THE * 
C DERIVATIVES AS H A G  DOES. * 
C W H - = * P  i H + p  - 

SUBROUTINE &(z,w',HI 

IMPLICIT DOUBLE  RECISION (A-H.o-z) 
 COMPLEX*^ 6 Z,AI,BI,AIP,BIP;K,K~,HI ;=,HI 1,1121 
COMPLM*16 ARG.CI 
COMPIcM*16 BETA 

PI= 'A1 592654DO 

K= (1  2.DO)**( 1 .D0/6.DO)+CDEP(ARG) 

CATL CGBALR (-2, AI ,BI ,UP, BIP) 

H2= KS*(AI+CI*BI) 
REruRN 
END 

CI= DcMPIX( 0. Do, 1 .DO) 

ARG= PIX (0. DO, -PI/6. Do) 

KS= DCONJG(K) 

HI = K*(AI-CI*BI) 

C 
C 
C 
C 

c + + ~ * + + * + * * ~ * * * * * * * ~ + * * ~ ~ * * * * * ~ * * * * ~ * * * * ~ * * * * * ~ ~ ~ ~ * ~  SUBROUTINE DAFB2(F) 

C SUBROUTINE TO ACCURATELY DO THE HAWKEL TRANS'IQFU4 OF THE SOUND 
c pFuBsmELEvEL. * 

* 



C 
C ALP REPRESENTS THE DISTANCE ABOVE THE REAL AXIS THE FUNCTION WIU 
C BE INTEGRATED. 
C NS IS A PARAMETm R E E E 3 3 T I ' I N G  ADDITION OF AN ANALrrICAZ HMCTION 4 

C TOF(NF) 
C M IS THE NtMBlB OF TB%S USED To A P P R O ~ ~ N A T E  F(NP) To ~FI IVITY c l " U i " W H W * - * p p  

F(NP)=GBAR(NP) MUST BE W L E D  AT NP POINTS KITH K=(N-l,ALP) 4 

IMPLICIT DoUBU3 PIWISION (A4,O-Z) 
COMMCN /LNTEG/NS,ME,Nl 
COMMON/AFB2IN/ALP, DELEETA 
COlWLXX*I6 F(N1 ),CF,CARG,SUM,FNP,cMPI,DI 
W=Nl i 

DEIX=DELEE!J!A 
PI =3.1415926DO 

cMPI=DcMPIx(O.DQ, 1 .Do) 
.* 

C 
C 

SUBTRACT "3 ANALYTICAL FUNCTION IF. NS > ZIBQ 
ADJUSTING THE SUB!l!RA(?l'fON MITlIrIPLIIR CF 

rF(Ns.LE.0) GOT0 j l 1  
CF=DcMPLx(o.Do,o~Do) *- 

IF (ALP.w.o.0) 'MEN 
CF=DFTOAT(NP)/DFIOA!C(NS) 

IF (A.LP.NE.O.O'/ T" 
CF--CMPI*DFXIAT(NP)*F( 1 ) / ( D ~ A T ( N S ) * A L P )  

END IF 

DO IO,I=l,NP L 
DI=DCMPLX(DFIOAT(I-I 1, (-ALP)) 
C A R G = D ~ A T  ( NS') * ( -DI ) /DF?~OAT ( NP) 
F(I)=F(I)-cF*(I .DC-CDEXP(CARC)) 

C F O F (  2)  
EM).IF 

C SUBTRACT THE ANALYTICAL FUNCTION IF NS>O 

10 CONTWUE 
11 CONTINUE 

IF(ALP.EQ.O.0) F(l  )=DCMPLX(O.DO,O.DO) 
FTTP=F(NP) 
Do 12*1=2,NP 

DI =DCMPLX( DFIOAT (1-1 ) , (-ALP) ) 
F(I)=F(I)/(CDSW(D~ 1) 

12 CONTINUE 
IF(ALP.NE.O.0) F(l )=F(I )/CDSQRT( (-cMpI)*(ALP)) 

IF(ME.ET.1) GOT0 20 
C ADD TERMS TO INFINITY IF ME>O 

DO 15,1=1 ,NP 
DI =DCMPLX(DFIDAT(I-~ 1, (-ALP) 

CALL ZE;TA(NP,ME,CF,SUM) 
F(I)=F(I)+FNPWM 

CF=D1 /DFIQAT(NP) 

15 CONTINUE 
20 CONTINUE 

C DOTHEFFI! 

C ADD ALTEMATE TERMS To GIVE NP/2 W I  TRANSFORMED 
C A U  FORK(NP,F,l) 
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CF=DET.X*DFLLIAT (NP)*( CDSQRT (-CMPI ) )/( 2 P P I  ) 
DO 25,1=2,NP/2 

A=DMP( DFIL)AT ( 1-1 )* (ALP)*2. DO*PI/DFIIDAT( NP) ) 
P( I ) =A*F ( I ) +CMPI*F( NP-I+2) /A 
F( I ) =F( I ) WF/DSW ( DFWAT ( 1-1 ) ) 

25 CONTINUE 
RErm 
m 

C 
C 

10 
20 

30 

40 

50 

C 
C 
C 
C 

IMPLICIT DOUBLE m & S I O N  (A-E,0-2) 
CoMpLM*16 CX(Lx)  ,CAFtG,CW,CTE?Q,CI,Wl ,CMPI 
m m  SIGNI 
J=1 
cMPI=DcMpIx(o.Do, 1 .Do), 
PI=% 1 4 1  5926 .. 
SC=DSQRT ( 1 . DO/DFII~AT( 1x1 
Do 30,I=l,U - 

CX(J)=CX( ~ ) * e  
CX(I)=CTENP -: 

I F ( 1 . G T . J )  GOT0 10 
CTENP-SX (J ) *SC 

M=IX/2 
IF(J.LE.M) GOTO 30 

Jd-M 
M=M/2 
IF(M.GE. 1 ) GOTO x) 

J=JM 

ISTEP=2*L 
L=G' .. 

DO 50,M=1 ,L 
CARG=CMPI *PI *DBLE ( SICNI )*DBLE( (M-1 ) ) / D B U (  L) 
CW=CDMP(CARG) 
DO 5O,I=M, LX, ISTEP 
cm=c\r'"cx ( I+L) 
CX(I+L)=CX(I )-CTEMP 

CX( I)=CX(I)+CTEMP 
LFISTEP 
I F ( L . ~ . I X )  GOTO 40 
REl7JRN 
END 
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SUBROUTINE ZGTA ( m, M , A, SUM) 
C++-~+++++++t++++-H)+~~HHHHH")~+++++~+++4HI 

C SUBROUTINE To ADD THE NEX2SSARY !I!ERMS To 
C MPRESS I"IBLE FUNCTION TO INFINITY.  
C WILL USE DOUBLE PRDXSION.  
C 
C INFINITY MINUS SOME CONSTANT WHICH IS 
C INDEPENDE" OF A. 
C + - " H H H c + M H t +  

SUM=SUM OF l/(NP̂ .5)*1/((J+A)̂ .S) Fow J=l TO 

IMPLICIT DOW F N E I S I O N  (A-H,O-Z) 
CoMrmM*16 A,SUM,D2 
D2=DCMPIX (DFUIAT (M) , 0. Do) 

SUM=2. W(DSQKI'(DF?LIAG(M) ) - le rx>/CDSQlU'(SUM) ) 

DO l O , J = l , M  L 

i m=i .DO/(M+A) . 

m=m+i . OO/CDSQ$ ( J+A) 

$ -O.~+CDSQRT(SUM)*(~ .&$XJM+(I . 0 / 1 2 . ~ + s u M / 1 9 2 . 0 ) )  

10 CONTINUE .' 
SUM=SUM/DSW ( DE'doAT (Np ) ) 
FiEruRN 
m 



APPENDIX B - The Inversion Case Program 

The code for the lapse case follows. This code is extremely similar to the lapse 

case and the subroutine names and functions, variable names and hints are identical 

or at least very similar to those in the lapse case. 
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C 
C 
C 
C 
C 
C 
C 
i 
C 
C 
C 
i 
C 
i 
C 
c 

i 
c 

ORIGINAL PAGE IS 
OF POOR QUALITY P G O G R A M  qAIM 

C 
C 

C 
c 
C 

C 
C 
C 

C 
C 
C 

C 
C 
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ORlGilNAl PAC5 !S 
OF POOR QUALITY 

C 
C 
C 
C 

C 
i 
C 
C 
i 
i 
i 
i 
i 
i 
C 
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ORlGJNAb PAGE IS 
OF POOR QUALITY 

, 

c 
c 

L . 
c 

. 
c - 

c 

i 
c . .  

A -  . .. . _._-_ - - _---. __ _. . - 
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1 D 

i 

_ -  
L L  

i 

c 
c 

I 

1 

! 
1 

L 

! 
I 

3 

1 
! 

c 

I 
1 

5 

I 

1 
b 

I 

I 
7 

I 
! 

L 

~ 

i 
I 100 



ORiG;lfd,’i.L PAGE IS 
OF POOR QUALITY 
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C 
C 
C 

n E T U A h  
th3 

C 
C 
C 

c 

1 02 



ORfG!P@.L PAGE IS 
OF POOR QUALITY 

C . -  . .  C 
C 

c 

, 

103 



e 

I @  104 



c 

C 
C 
C 
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1 

IS 

C 
C 
C 
C 

ORIGINAL PAGE IS 
OF POOR QUALITY ..................................................................... 
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